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Abstract-This paper introduces a novel spike detection algorithm
based on the use of Walsh Transforms. The algorithm focuses on
the assessment of characteristics in the Electroencephalogram
(EEG) signal that reveal the presence of a spike feature. The
mathematical formulation of the algorithm is introduced and
results obtained from the analysis of data from 7 epileptic
patients are presented.
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|. INTRODUCTION!

Electroencephdogran (EEG)  recordings  provide  dynamic
evidence of ongoing dectricd activity in the bran. EEG is
paticularly useful in determining the presence, extent and
origins of neurologicd disorders, such as epilepsy. The
abnorma bran activity in  between epileptic  seizures,
captured by the EEG as interictal spikes is frequently used as
a vauable source of information towards the characterization
of the patient’s illness and possible courses of action. It is in
this context that automated methods for the identification of
these interictd spikes are of great help to the dlinicians, as a
helpful pre-screening tool to reduce the large volume of
patient EEG data obtained from longterm monitoring, and as
an objective, unbiased evduation of the dgnads from the
patient. This paper describes the definition of a new spike
detection dgorithm that uses the Wash Transformation to
asess ome of the characterigtics of the EEG dgnds and
looks for a match with those characterisics that are
commonly associated with interictal spike activity.

I1. M ETHODOLOGY

Traditiondly, the two characteristics that are considered as
most reliable in the detection of spikes and sharp transients
are the fast rise and decay of the spike, and the sharpness of
its peak, which may be measured by the firg and second
deivatives of the sgnd, respectively [3, 4]. The gpatio-
temporal context of the EEG is dso taken into account in
severa of the pattern recognition or rule-based systems used
for spike detection [5, 8, 9].

The dgorithm introduced here attempts to decorrdlate the
input EEG signals into orthogonal bases with different orders
(degrees of shapness) and different dimensions (degrees of
fuzziness) using the Walsh transformation, in order to detect
interictal spikes. The agorithm uses the transformation as a
means to asess the degree in which the badc characteridtics
of spikes are present within a window of observation in the
EEGsgnds.
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Fig. 1. Smulated spike used to describe the morphology of
interictal spikes.

A. Criteria used in characterizing interictal spikes

Although intericta spikes differ grestly from one patient to
the next, and even within recordings from the same patient,
many <pikes follow a generd characterizing pattern. This
genera waveform is Smulated in Figure 1.

As a result of the information provided by neuroscientists at
Miami Children's Hospitd (MCH) and our literature search
in this fidd, the following lig of primordid criteria was
edablished, with reference to Figure 1, as necessary to
declare the existence of an interictd spike:

1. The interictd spike is corsidered to be the waveform
RPF , with two half waves RP and PF .

2. Both the risng and faling dopes of the spike are
very steep.

3. The gpike is characterized by a sharp pesk P ,
which is due to a sudden change in polarity of the
voltage signd recorded. This sharpness occurs in
both the time domain and the spatia domain.

4. The sharpness of the spike is continuous, i.e the
spikes must “display sharpness in both narrow and
wideintervalsof observation” [2].

B. Algorithm Development

The Wash Trandform is a welkknown orthogona
tranformation with many applications in sgna and image
processing. The Wash matrix is an n by n symmetric and
orthogond matrix conssting of +1 ad —1 as its elements to
conditute square waveforms as its basis functions [6]. The
matrix obtained from the Wash trandformation kernd may be
expanded to any dimension N = 2",
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For the ordered Walsh kernd matrix, the Walsh operator W,’\,
of " order and length N is defined based on the sequency
vdue and dimenson N conddered. The order » is given by
the sequency of the vector, and refers to the type of
differentiation used between sample points. The dimenson N
refers to the degree of fuzziness in this type of differentiation.
Conddering the time dependent input signd f(¢), the
Wesh trandformation W, is given by the convolution of
W, and f(¢) as

Wy =wy * f() )

If we consder the Walsh operator of 1% order and length 2,
W3, we redlize that it is equa to the discrete mathematical T
derivative, ', which can be thought of as the differences
between adjacent sampled points:

wy=[1-1=d" Q)

On the other hand, if we consider the Walsh operator of 2
order and length 4, W7, we realize that it is not equa, but
equivdlent, to the discrete mathematicd 2 derivative, 42,
which can be thought of as the difference between two 2-
point differences of three adjacent points, or the difference
between two contiguous first derivatives:

wi=[l-1-11@’=[1-21 ¢

At this point, we can make the generdization that W,lv is
equivaent to o', and W2 is equivdent to d® (in the sense
noted above) for any length N, with N being the degree of
fuzziness in the differentiation. This equivdency means that
they perform the same operation when convolved with the
input signal, but they teke into account different number of
points from the input signd, depending on the length N. In
other words, with a larger N, the degree of fuzziness of these
derivetives is larger, and thus different characterigics of the
input sgnd may be appreciated. With this generdization we
may aso say that the Walsh operators le\, and WZZV may be
used as opeaors for the firsts and second derivatives,
respectively, with advantages noted in the orthogonality of
the vectors and in the smplicity of their computation [1].

After further analysis of the behavior of W in relation to
typical, bi-phadc interictd spikes, we were able to establish
the following observations: (1) The results from W]% yield
two peaks for each spike. The first peak is associated with the
risngside dope, and the second pesk is associated with the
fdlingsde dope. The amplitude of each pesk in W; is an
indicator of the steepness of the dope, where a higher pesk
means a steeper dope. (2) The results from W]\f yidd a pesk
associated to the peak location of the spike. The amplitude of
this pesk in W,\% is an indicator of the sharpness of the apex
of the spike, where ahigher peak means a sharper apex.

In order to extract an interictd spike from the background
sgnd, we deveoped a st of integrated mahematica
expressions based on the Walsh operators. Criterion 4 defined
in the previous section dates that an interictal spike must

exhibit continuous sharpness. In other words, it must be sharp
in narrow as wel as in wider intervals of observation. This
implies that an actua interictal spike must result in high
vauesfor the pesksin Wy and Wy for severd lengths N.

To andyze that required multi-scae sharpness, we consider
the outputs of these Wash operators but using different
scaes b%/ means of the different lengths of the operators W;
and W, . In this case we use N = 4, 8, and 16 as the number
of points anayzed in the input data. This type of approach
was aso used in a study by Barreto [2] for the detection of
interictal spikes in ECoG, but using Lagrange derivatives to
measure the EEG sharpness.

In order to account for severd intervals of observation, the
agorithm we developed takes the reaults at different scales
and then adds them together to detect the presence of

sharpness  under  different  scding.  This is  expressed
mathematicaly as:
wr= Wy AW+, @

for r = 1, 2. The motivation in this operation is to extract al
potential trandtions using different scales for assessng
sharpness, in an additive way. In other words, if sharpness of
the signdl is identified in any of W, , Wy, or Wi, resiiting
in high-amplitude pesks, this will yield the recognition of a
sharp signd in " aswell.

On the other hand, actud intericta spikes must aso exhibit
high locd sharpness. The best way to messure this is through
the convolution of the actual mathematical firds and second
derivatives, with thetime signal 1 (¢) as:

D'=d** f({)ad D> =d’* f(t) 6

which take into account only 2 and 3 data points of the input
signd, respectively.

Snce the interictd spike must exhibit high degrees of
sharpness in both the narrow and wider intervas, we need to
combine the reslting measures o shapness in  both
intervals. This is achieved with a point-by-point
multiplication between the actud mathematicd derivetive,
given by D", and the addition of the Wash transformaions
of different length N, given by W, +W, + Wy . Therefore,
the term 7/ " becomes a function of the derivetives and of the
Wadsh transformation, as.

W (D" W) =D AW W WG] ©

for » = 1,2. So, individudly, these functions for orders 1 and
2 will be described es

@ w'=D'XW, +W; +Wy) ,ad
() w?=D*XW +Wi +Wy) )

The objective of this point-to-point product is to sdectively
reinforce the parts of the signd that resulted in large outputs



from the derivetive (D) and composite Walsh (W, + W +
W4) transforms. @ | i po Pata:

By obsarving the responses of the Wash transformations, we P i m\‘;_’rv S
noted that a points where an interictal spike is defined, two : I b Yo il
prominent peaks occur in W %, ddlimiting the 2oluretion of the 7 G e e
spikes, and one prominent pesk occurs in W < corresponding R N ccamilih 4 I ol e
to the sharp apex of the spike. — —
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After applying these mathematical expressons to the :
epileptogenic EEG from different petients, we confirmed that . b i et
the results in W " emphasize the presence of a signd that
meets both of the main characteristics of the interictd spike:
sustained steep dopes and sharp pesk. At this point, dynamic o
thresholds were st in order to eiminate the W " responses of o) : A A Fon
low amplitude in both the tempord and spatid domains. The : i
thresholds were set to be dynamic to teke into consideration
the variations in amplitude and frequency of the background
activity. T

The dynamic threshold was set equal to twice the standard R R T
devigtion @bout the meen, caculated for the signds in the < . IR s
locd background. For the tempora dynamic threshold, we
defined the locd background activity to be a time window N
with duration of 3 seconds. In Figure 2 (a), we display a 5 1. ) AN N T
second EEG block collected a channds Ps through Te. Note o e
that there is an intericta spike identified in electrode F s. In
Figure 2 (b), the W " signd obtained for the EEG in channd | ™"
F g is displayed, as well as the W’ signa obtained after the © i
dynamic tempord threshold has been applied. If we apply the
dynamic tempord threshold to dl of the EEG channds
shown in Figure 2 (a), we obtain the plots in Figure 2 (c) for
the w?! signals. It may be observed in these plots that, when 7
comparing the pesks in W ' for every electrode a the time S B I N PR R AP WPV S HWE IR
instance where the spike is identified @lmost 0.5 secondsinto
the segment), the highest peaks are those seen in F g, which is

[
NL »
=
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precisdly the location of the spike. This observation dlows ’ S
for the implementation of the dynamic gpatial threshold,
caculated across dl electrodes a esch gpecific ingant of R B e

time. In Fgure 2 (d), the sgnals obtaned as a result of
applying the gpatid threshold are displayed again for al | oo
channels. We can see here that those pesks that were smaler
than the background across the rest of the dectrodes have *' A" PR S - S a i
adready been diminated.

In order to refine the detection of spikes from these dynamic . :
thresholds, a set of mathematica rules were gpplied to the W” _.i'L
sgna in order to confirm the presence of the rest of the R
criteria that identify interictd spikes. These included checks i
for (1) total duration of the interictal spike or sharp wave to - i o ——iadbals
be from 20 to 200 milli-seconds, (2) amplitude of the spike to
be above 20 micro-valts, (3) ratio of amplitude between the
spike and the background activity to be greater than 1.6, and
(4) reduction of arifacts such as EKG and background signd,

anong others All of these checks were performed with the @ G F_'ghdz- ?3‘12'9 EiGTﬁgaép&ozmmb{h;hiydgmiwﬁ —
. . . signds rough T6. ion "on sign:
use of the W signd, as opposed to the EEG signdl itsdlf. and application of the temporal dynamic threshold. () Temporal dynamic

thresholds for &l channdls. (d) Spatia dynamic threshold for &l channels.



Il. RESULTS
A. System Evaluation Setup

The efficiency of the proposed intericta spike detection
agorithm was tested with EEG data recorded from 7 patients
a Miami Children's Hospita, usng the 10-20 Electrode
Sysem and a sampling rate of 500 samples/second, per
channd. The 21 channd signads were recorded with respect
to a refeence dectrode located close to the vertex. A
NeuroScan  Electricd Sgnd Imaging sysem, and the
asociated recording software were used to cepture EEG from
the patients in digital files. About 20 minutes of EEG from
each patient were used for the evauation of the dgorithm.

B. Evaluation Parameters and Results

Prior to any processng by the proposed dgorithm, two
human experts, a dinica neuroscientis and a regigered EEG
technologist, scored the files dectronicaly, upon review in
the NeuroScan sysem. Each of them, independently, marked
al ingtances of interictal spikes they found in the files. For
the initidl assessment of the dgorithm, a ke was
acknowledged as a true event if at least one of the experts had
maked it. There were a tota of TOT _SPK = 163 such
pikes. After runmning the same files through the agorithm,
the system identifications that matched the events found by
ether human expert were consdered true podtives (TP), and
the rest were consdered fase positives (FP). Events marked
by at least one expert, but not detected by the dgorithm were
identified as fdse negatives (FN). With these counts the
sengitivity (TP/TOT_SPK) and the pecison (TP / (TP + FP))
for the dgorithm were cdculated. They are shown in Teblel.

Table I. Performance of the spike detection agorithm
(Note: Spikes acknowledged if marked by either expert)

Set Sensitivity Precision
. 108/163 108/ (108 + 91)
All 7 patients —066 —054
IV. DISCUSSION

The resllts summarized in Table | ae encouraging,
paticularly when we condder that this level of performance
was obtained from direct andyss of the EEG dgnds
themsdves, within a short window of observation, and
without reference to globa condderations, such as the dsate
of the subject, or other contextud clues.

It should also be kept in mind that the senditivity of the
system, as reported in Table |, uses the broadest criterion for
the acceptance of a true interictal event (at leest one expert
found it). If we were to apply a more stringent criterion, such
that only events marked as spikes by both experts are
accepted, then the sengtivity of the system with respect to
this new “golden dandard” would be much higher,
gpproaching 89%.

The agorithm adso proved to be robust againgt the @tection
of a number of bidlogicdly-generated artifacts, such as those
induced by tdking, jav movement, muscle movement, eye
blinking, eye movement, coughing, and swalowing. These
were recorded from a non-epileptic subject, and successfully
ignored by the dgorithm.

V. CONCLUSION

The primary characterizing features of interictd spikes,
enumerated in this paper, were embedded in our sysem for
the extraction of the spikes from the background activity. We
trandated each of these characteristics into a mathematical
formula such that we could implement them in the
development of our adgorithm. The spike detection agorithm
developed through this study was based on the Wash
transformation, which is an orthogond transformation that
decomposes the ggnd  into mutudly  independent
condtituents, each of which can be usgful in the overdl
interpretation process of the EEG. Encouraging results were
obtained from the gpplication of the dgorithm to EEG data
from seven patients.
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